Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Applied Sciences ; 12(13):6331, 2022.
Article in English | ProQuest Central | ID: covidwho-1933957

ABSTRACT

Aerial infrared (IR) thermography has been implemented in recent years, proving to be a powerful and versatile technique for performing maintenance at photovoltaic (PV) plants. Its application speed and reliability using unmanned aerial vehicles (UAVs) or drones make it extremely interesting at large PV plants, due to the associated savings in time and costs. Ground-level thermographic inspection is slower and more costly to apply, although it does provide higher optical resolution, due to being conducted closer to the PV modules being inspected. Both techniques used in combination can improve the diagnosis. An IR thermography inspection strategy is proposed for PV plants based on two stages. The first stage of the inspection is aerial, enabling thermal faults to be detected and located quickly and reliably. The second stage of the inspection is done on the ground and applied only to the most relevant incidents revealed in the first stage. This inspection strategy was applied to a 100 kW PV plant, with an improved diagnosis verified via this procedure, as the ground-level inspection detects one-off thermal incidents from objects creating shade and from solar reflections. For PV modules with open circuits or open substrings, the use of one technique or another is immaterial.

SELECTION OF CITATIONS
SEARCH DETAIL